Facilities for Long Baseline Neutrino Oscillation Studies, Nucleon Decay and Atmospheric Neutrinos

Kate Scholberg & Hank Sobel CSS 2013

Physics - Long-baseline Neutrino Oscillations

- Current generation of neutrino oscillation experiments have made measurements of two mass-squared differences, Δm_{12}^2 and $|\Delta m_{23}^2|$, and now all three mixing angles.
- The remaining unknowns in the three-flavor picture are the mass hierarchy, the CP phase angle δ , and the octant of θ_{23} . Long-baseline neutrino beams of ~GeV energies coupled with large detectors can address all these unknowns.

Physics – Nucleon Decay

- To date, the search for nucleon decay has not yielded any positive evidence.
- The absence of nucleon decay, now extended beyond 10³⁴ years lifetime, has provided stringent constraints that must be addressed by any proposed Grand Unified Theory (GUT).
- Additional exposure will probe and constrain these models...and maybe discover evidence.

Present Limits and Projected Sensitivity

After 10 years operation:

$$p \rightarrow e^+ + \pi^0$$
: $p \rightarrow v + K^+$: 1.3×10³⁵ years (90% C.L.) 3.0×10³⁴ years (90% C.L.)

Physics – Atmospheric Neutrinos

- Atmospheric neutrinos are observable in a large underground detector.
- Due to great sensitivity to matter effects, a wide energy range from 100 MeV to 1 TeV, and a wide range of baselines, atmospheric neutrinos are sensitive to all of the currently unknown oscillation parameters and also provide a valuable laboratory for testing exotic models including CPT violation, decoherence, and nonstandard interactions (NSI).
- Current experiments are statistics limited.

Oscillation Probabilities for Atmospheric Neutrinos

LBNE Science Document: http://arxiv.org/abs/1307.7335

Example: Hierarchy Sensitivity with Atmospheric Neutrinos in Hyper-K

MSW effect in Earth's core

→ resonance effect on either

∨ or anti-∨

 3σ determination with <10 year observation (better sensitivity depending on the value of θ_{23})

Synergies/Differences

- There are no definitive predictions for nucleon lifetime.
- Existing limits of >10³⁴ years mean that very large detectors (Super-K has limits based on 260 kton yrs) are necessary for a significant improvement in sensitivity.
- Significant progress in the search for nucleon decay requires an underground site to shield from cosmic ray background.
- The large size (cost) coupled with the uncertain result has left progress to be dependent on parasitic operation in large detectors built for another purpose.

Synergies/Differences

- Long baseline experiments are highly motivated/fundable and also require very large detectors.
- Due to tight event timing, overburden is probably not a crucial factor in long baseline experiments, almost any surface or near surface site in a neutrino beam would be usable.

Synergy

If long baseline detectors are located underground they can also be used for a PDK search, the study of atmospheric neutrinos (and other physics).

Potential Sites

- The overburden requirement for a large nucleon decay or atmospheric neutrino detector depends to some degree on the chosen technology but in general 2000 - 3000 mwe.
- If we assume that a PDK or atmospheric neutrino detector can get funded without the requirement of a neutrino beam for a long baseline component, then there are many potential underground sites.
- Only two sites have been proposed...

Current Proposed Sites for Atmospheric Neutrino Detectors

CUPP
Center for Underground Physics
Pyhäsalmi Mine in Pyhäjärvi, Finland

India-Based Neutrino Observatory (INO)
ICAL – Magnetized Iron calorimeter – 50 kton

Depth ~ 3500 mwe

Under Water/Ice Atmospheric Neutrino Detector Sites

These detectors were built to search for extraterrestrial neutrinos.

- Flux is expected to be small but very high energy.
- Extremely large volumes required but with high energy detection threshold (>1 Tev) i.e. sparse detector array.
- Subsequent higher density array (IceCube "Deep Core")
 has been able to observe lower energies and study
 atmospheric neutrino disappearance.
- Proposed even more dense array e.g. PINGU inside IceCube, could lower the threshold to <10 GeV and be sensitive to the hierarchy through matter effects in the earth.

Sites With a Neutrino Beam

Underground sites with the possibility of a neutrino beam that could potentially accommodate a new large detector include:

- The Homestake mine in South Dakota, which will be in the LBNE beam
- The Pyhasalmi mine in Finland, which could be in the proposed LBNO neutrino beam
- The Kamioka/Tochibora mine in Japan which is already in the T2K neutrino beam
- The LGNS laboratory in Italy
 - Neutrino beam now ended
- The Soudan site in Minnesota
 - Current NUMI beam

Potential Sites

Facility	Location	Overburden (MWE)	Past/Existing Large Underground Detectors	Proposed/Planned Large Underground Detectors		References
Homestake	USA	4290	Homestake Chlorine Detector	LBNE (LArTPC)	Future from FNAL	EPJ Plus, 127 9 (2012) 107
Soudan	USA	2090	Soudan II, MINOS		Current from FNAL	www.sudan.unm.edu
LNGS	Italy	3800	LVD, Borexino, ICARUS,OPERA		Current from CERN	EPJ Plus, 127 9 (2012) 109
Pyhasalmi	Finland	3900		MEMPHYS, LENA, GLACIER, MIND	Future from CERN	http://laguna.ethz.ch:8080/Pl one
Kamioka	Japan	2700	Kamiokande, Super-K, KamLAND	Hyper-K (Tochibora or Mozumi site)	Current and future beam from J-PARC (T2K, T2HK)	FPI Plus. 127 9 (2012) 111

Detector Schedules

- Super-K continues to operate underground in the phase I T2K beam.
- Next generation detectors are planned to begin operation in approximately 10 years.
- LBNE is currently the only next generation experiment funded.
 - Current LBNE funding only allows construction on the surface.
 - Additional funding is being sought to allow it go underground.

Experiment		20	13		- 2	20:	14		2015				2016			Γ	20	017	7	Γ	2018			2019			T	2020			Τ	2021				20	22	T	- 2	20	23	Т	2024			Π	20	2025		
						De	tai	led	De	sigi	1																																						\Box	
LDNE															Ci	vil (Coi	nstı	ruc	uction											Т	Т		Γ					П			Т	Т		Г		П	\Box		
LBNE	П			\Box	T	T	\neg	\neg	\neg		Τ	Т	Т	Т	Т	Τ	Т	Τ	Т	Т	Γ	Т						De	tec	tor	In	sta	llat	ion					寸	\exists	\exists	T	\top	\top		Т	Г	П		
	П				\neg	T	\neg	\neg		\top	T	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т		П	Т	Т	Т	Т													(Ope	rat	ion	IS					
	П				\neg	T				\top	T		T	Τ	Т	Τ		Т	Τ	Τ	Τ	Π		\neg	T		T		\top	T	T	T	Т		Γ			П	П	П	П	Т	Т	Τ		Π		П		
					D	es	ign	1					T	T	T	T	Τ	T	T	Τ	T	Τ		一	T	T	T	T	T	T	T	T	T		Τ	Τ		\exists	T	\exists	T	T	T	T		Τ	П	П	П	
	П	Start Schedule Uncertain - Civil Construction														Т		\exists	\neg	\exists	\neg	T	T	T		Т	Г	П																						
Hyper-K	П				\neg	\top	一	\neg	\neg		T		Т	Т	Τ	Τ	Т	Т	Т	Т	Π	Т		П	Т	Т	Т	Т	Т	Т			In	sta	llat	tion			一	\dashv	ヿ	\top	\top	\top		T	П	П		
	П				一	\top	\neg	\neg	一	\top	T		T	\top	T	T	T	Τ	\top	Τ	Τ	T		一	T	\top	\top	\top	\top	\top	T	Т	Т	Т	Γ	Т	Operations													
	П			П	T	T		\neg	T	\top	T	T	T	T	T	T	Τ	T	T	Τ		Τ		一	T	T	T	T	T	T	T	T	T	T	Τ	Τ		П	Т	П	П	Т	Т	Т	Τ	Т	\Box	П		
Super-K																	I	Rui	nni	ng											Ť										G	d R	uni	nin	g?					
-	П			П	Т	Т	П	П	П	Т	Τ	Τ	Τ	Т	Τ	Τ	Τ	Τ	Т	Τ	Π	Т		П	Т	Т	Т	Т	Т	Т	Т	Τ	Τ	Т	Γ	Τ		П	Т	П	П	Т	Т	Т	Т	Т	\Box	П		
	Lal	b D	esi	gn	寸	T	\neg	\neg	T		T	T	T	\top	T	Τ	T	Τ	T	T	Γ	T		一	T	T	\top	\top	T	T	\top	T	\top		Γ			\exists		\exists	\exists	\top	\top	T			\Box	П		
LAGUNA/LBNO														St	art	Sc	he	dul	le l	Jnc	ert	ain	- Ci	ivil	Coi	nsti	ruc	tio	n, [Det	ect	tor	Ins	tall	ati	on,	Op	era	tio	ns										
-	П				Т	Т	П		T	Т	Τ	Τ	Τ	Т	Τ	Τ	Τ	Τ	Τ	Τ	Π	Τ		Т	Т	Т	Т	T	Ť	Т	T	Τ	Τ	T	Γ	Τ		П	T	Т	Т	Т	Τ	Τ		Τ		П		

Summary

- There is an international effort to search for CP violation in the lepton sector.
- A massive detector in a neutrino beam is required.
- The search for nucleon decay is one of the most important topics in particle physics.
- Atmospheric neutrinos, observable in a large underground detector, are sensitive to all of the currently unknown oscillation parameters.
- The same detector could be used to advance the search for nucleon decay, the study of atmospheric neutrinos and other physics if the detector is located underground.
- This is the plan for Hyper-K and LBNO. It would be a lost opportunity if this condition cannot be satisfied with LBNE.

EXTRA

LBNE Beamline extraction from

Candidate near detector

5.7° down

LBNE Beamline

1,300 km to SURF

Cryogenics - cold box, buffer storage **Cryostat septum** LAr filtration system HVAC Detector Module 2 high x 3 wide x 18 long drift cells x 2 modules 216 APAs, 224 CPAs

> LAr Far detector 34 kT in two modules

SURF facility Lar detector hall at 4850 level

Hyper-Kamiokande

Total vol. 1 Mton

Fiducial vol. 0.56 Mton (0.056 Mton x 10 compartments)

Photo-sensors 99,000 of 20-inch PMTs for Inner Detector

(20% photo-coverage)

25,000 of 8-inch PMTs for Outer Detector

LAGUNA

European design study for Large Apparatus for Grand Unification and Neutrino Astrophysics

LAGUNA-LBNO

CUPP

(Center for Underground Physics in Pyhäsalmi Mine in Pyhäjärvi, Finland)

- Pyhäsalmi mine is the biggest operational base metal mine in Finland. It is also the deepest metal mine in Europe.
 - depth 1450 m, ca 4000 metres water equivalent (m.w.e.)
 - the average rock density varies between 2.81-2.83 g/cm³
 - low radioactivity: U 0.8 ppm, Th 3.2 ppm, K 1.17%, Rn < 70 Bq/m³ (depends on ventilation)
 - accessibility: a truck road (maximum load size
 2.6 m x 2.8 m x 8 m) and a lift all the way down
 - existing infrastructure including buildings, electricity, water pumping and air-conditioning
 - It provides space for scientific experiments:
 - a laboratory and an office on the surface
 - currently active underground research rooms at 90m, 210m, 400m, 660m and 970m
 - new caverns in the new mine (1440 m) can be built if needed

